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ABSTRACT 

We address the question of r auntnation for Drell-Yan dil%entiai distributions, 
sp&lic.ally the case of zero rapidity or ZF. We find that we can use the indusive 
hard part in order to rexam the large corrections due to soft collinear gluon emission. 
Thir greatly simplifies resummation efforts for these distributions. The one loop 
rapidity distribution is investigated to determine the quality of our approximation, 
which ia found to be very good at zero rapidity. 

The resummation of large corrections that occur near the boundary of phase 
space in Drell-Yan has been a topic of investigation for quite a few years. In partic- 
ular the case of the inclusive cross section has been thoroughly investigated. Here 
we address the question of resummation for differential distributions, which allow 
a wider comparison with experiment. We find that for the case of the rapidity 
distribution at zero rapidity, the resummed hard part of the inclusive caSe can be 
used. 

Let us consider a differential Drell-Yan cross section, in terms of Q* and 
some dimensionless variable q(q, s), which we assume to be a smooth function of the 
virtual photon momentum q’ at all values of q’ that are allowed by the requirement 
qZ = Q*. Examples are ZF = Zq./JI; and the rapidity, Y = (1/2)ln[(qo +qz)/(qo -q.)]. The 
arguments we present in the following are phrased generally, but for our present 
purposes one should read ? = Y = 0, or q = zp = o. The factorization theorem [l] 
gives for this differential cross section the general form 

do 
dQZdrl = bo / 

’ dx, dxl 
o ,,fo/A(IL)f*,8(22)H(~LP1,~*P*,Q*,ti). 

Here we have suppressed the scale dependence in the parton distributions f(z). 
00 may be taken as the Born cross section. so that the hard-scattering function 
H(z~p~,qp~,Q~, r) may be taken to be dimensionless. H is a sum over partonic 
matrix elements, subtracted to eliminate divergences associated with the incoming 
hadrons. AS such, it may always be put in the form of a sum over terms, each of 
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which contains an integral over a (possibly trivial) hadronic final state, whose total 
momentum is zlpl + SZP? - q, with q’ the momentum of the virtual photon. Thus, 
schematically, we have 

x W22- (ZIPI +ZPP? -k)')J(ts- O(ZIPI +zz~z -k,s)). (2) 

Subscript i labels contributions to all final states which include the virtual photon. 
In each case, we integrate over the final state, subject only to fixed total momentum 
k for the hadrons. The difference between the differential cross section in r) and the 
inclusive cross section da/dQ* is entirely contained in the second delta function. 
Without it, the integral and sum over the lH1: reproduce the inclusive hard part, 

?J$$ ( iv ~IPI,w2rk)l:6(QZ - (ZIP1 +mPz -kY) = w(z), 

where z = Q*/x,z+ Although the integral over k’ is in general singular for a given 
final state, the factorization theorem assures that the sum over final states produces 
a distribution in L that is infrared finite. 

Now we note that as z + 1, the phase space allowed for the kr integral 
vanishes. It is easy to see that for solutions to the photon mass shell condition 
0 = Q* - (ZIPI + z*& - k) with k. > 0 all kP-components vanish as 1 - Z. Given our 
assumption that c(q) is a smooth function of q’ in the allowed range, we can expand 
q(zlpl+ ~2pz - k) and the delta function in q about k = 0, 

Vi - +IPI + QPZ - k, 8)) = J(r7 - +,PI + SZPZ)) 

+ kpa+d 
~19=“~iICrlP2 a’(? - 17(wJl + QPZ)) f.. , (4) 

Substituting this expansion into the factorization formula, we keep only the first 
term. Dimensional analysis shows that the second, and succeeding terms in the 
expansion are supressed by factors of I- Z, due to their extra factors of lip in their 
respective phase space integrals. Such terms are not singular es z + 1, and need not 
be included in the resummation formula. Our result, then, keeping all terms that 
are singular as z + 1, is 

do 
(- )( WSYm, 
dQZdtl 

= 00 J ’ dx, dx2 
o ~~f.alA(~l)fblBw 

x 6(ii - +,p1 + z2p+(z)(‘-“m). (5) 

This is the result we set out to prove. In this expression, one can simply take the 
hard part w(z)(‘~‘““‘) which is available in the literature [2, 31. 

In order to get a better idea of how well the approximation works: we inves- 
tigate the case of the one-loop Drell-Yan rapidity distribution, at zero rapidity, in 
detail. We restrict ourselves to the qq channel. The exact answer was calculated 
first in [4], and cast in a simpler form in (51. For the approximate expression we use 



Eq. (5), where ? should be taken as the rapidity and set to zero. The quantity we 
plot is the one loop K-factor, defined by 

d&) 
(dQzdY 
-ly=o) K(‘)(T,Y = 0) = (6) 
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where r = Q/s. For simplicity we chose the @-independent parton densities of 
KhalaS and Stirling (61, together with a one-loop (IS with four flavours and A = 0.5 
GeV. We plot the one-loop K-factor in Fig.1 for pp scattering at ./Z = 630 GeV. 

Fig.1. Approximate vs. exact one-loop K-factor at zero rapidity, pp scattering, at fi = 630 
GeV. The top line is the exact result, the bottom one our approximation. 

Erom Fig.1 it is clear that the approximation works remarkably well over the 
whole range in r. We have also investigated the same K-factor in pp scattering at 
fixed target energies (JI; = 30 GeV), and find similarly good agreement. Thus we 
feel confident in presenting Eq. (5) as a good approximation to the resummed DY 
rapidity distribution at zero rapidity (or I~). 

We should add however that when the rapidity of the vector boson is signifi- 
cantly different from zero we find that the approximation works less well. This case 
will be discussed in a forthcoming paper [7]. 
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